enpls: Ensemble Partial Least Squares Regression

An algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions.

Version: 5.6
Depends: R (≥ 3.0.2)
Imports: pls, spls, foreach, doParallel, ggplot2, reshape2, plotly
Suggests: knitr, rmarkdown
Published: 2016-11-26
Author: Nan Xiao, Dong-Sheng Cao, Miao-Zhu Li, Qing-Song Xu
Maintainer: Nan Xiao <me at nanx.me>
BugReports: https://github.com/road2stat/enpls/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: http://enpls.org
NeedsCompilation: no
Citation: enpls citation info
Materials: README NEWS
In views: ChemPhys
CRAN checks: enpls results


Reference manual: enpls.pdf
Vignettes: A Brief Introduction to enpls
Package source: enpls_5.6.tar.gz
Windows binaries: r-devel: enpls_5.6.zip, r-release: enpls_5.6.zip, r-oldrel: enpls_5.6.zip
OS X Mavericks binaries: r-release: enpls_5.6.tgz, r-oldrel: enpls_5.6.tgz
Old sources: enpls archive


Please use the canonical form https://CRAN.R-project.org/package=enpls to link to this page.