bigsplines: Smoothing Splines for Large Samples

Fits smoothing spline regression models using scalable algorithms designed for large samples. Six marginal spline types are supported: cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric effects are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.

Version: 1.0-9
Imports: stats, graphics, grDevices
Published: 2016-08-13
Author: Nathaniel E. Helwig
Maintainer: Nathaniel E. Helwig <helwig at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Materials: ChangeLog
CRAN checks: bigsplines results


Reference manual: bigsplines.pdf
Package source: bigsplines_1.0-9.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X Mavericks binaries: r-release: bigsplines_1.0-9.tgz, r-oldrel: bigsplines_1.0-9.tgz
Old sources: bigsplines archive

Reverse dependencies:

Reverse depends: eegkit


Please use the canonical form to link to this page.